Applied Sciences, Vol. 13, Pages 6344: Geometric Error Parameterization of a CMM via Calibrated Hole Plate Archived Utilizing DCC Formatting

JournalFeeds

Applied Sciences, Vol. 13, Pages 6344: Geometric Error Parameterization of a CMM via Calibrated Hole Plate Archived Utilizing DCC Formatting

Applied Sciences doi: 10.3390/app13106344

Authors:
Ming-Xian Lin
Tsung-Han Hsieh

This study implemented the measurement results and administrative information obtained from the hole plate into the Digital Calibration Certificate (DCC). The DCC comprises three parts: Norms and Standards, Hierarchical Structure, and XML as Exchange Format. DCCs play a significant role in the field of metrology and statistics by ensuring data interoperability, correctness, and traceability during the conversion and transmission process. The hole plate is a length standard used for two-dimensional geometric error measurements. We evaluated the accuracy of the high-precision coordinate measuring machine (CMM) in measuring a hole plate and compared the measurement error results obtained from the hole plate with those of the laser interferometer, autocollimator, and angle square. The results show that the maximum difference in linear error is −0.30 μm, the maximum difference in angle error is −0.78″, and the maximum difference in squareness error is 4.54″. The XML is designed for machine-readability and is modeled and edited using the XMLSpy 2022 software, which is based on information published by PTB. The administrative management and measurement results tasks are presented in PDF format, which is designed for human-readability and ease of use. Overall, we implemented the measurement results and information obtained from the hole plate into the DCC.

MDPI Publishing. Click here to Read More