JMSE, Vol. 11, Pages 1086: Low-Resource Generation Method for Few-Shot Dolphin Whistle Signal Based on Generative Adversarial Network

JournalFeeds

JMSE, Vol. 11, Pages 1086: Low-Resource Generation Method for Few-Shot Dolphin Whistle Signal Based on Generative Adversarial Network

Journal of Marine Science and Engineering doi: 10.3390/jmse11051086

Authors:
Huiyuan Wang
Xiaojun Wu
Zirui Wang
Yukun Hao
Chengpeng Hao
Xinyi He
Qiao Hu

Dolphin signals are effective carriers for underwater covert detection and communication. However, the environmental and cost constraints terribly limit the amount of data available in dolphin signal datasets are often limited. Meanwhile, due to the low computational power and resource sensitivity of Unmanned Underwater Vehicles (UUVs), current methods for real-time generation of dolphin signals with favorable results are still subject to several challenges. To this end, a Masked AutoEncoder Generative Adversarial Network (MAE-GAN) model is hereby proposed. First, considering the few-shot condition, the dataset is extended by using data augmentation techniques. Then, to meet the low arithmetic constraint, a denoising autoencoder with a mask is used to obtain latent codes through self-supervised learning. These latent codes are then utilized in Conditional Wasserstein Generative Adversarial Network-Gradient Penalty (CWGAN-GP) to generate a whistle signal model for the target dataset, fully demonstrating the effectiveness of the proposed method for enhancing dolphin signal generation in data-limited scenarios. The whistle signals generated by the MAE-GAN and baseline models are compared with actual dolphin signals, and the findings indicate that the proposed approach achieves a discriminative score of 0.074, which is 28.8% higher than that of the current state-of-the-art techniques. Furthermore, it requires only 30.2% of the computational resources of the baseline model. Overall, this paper presents a novel approach to generating high-quality dolphin signals in data-limited situations, which can also be deployed on low-resource devices. The proposed MAE-GAN methods provide a promising solution to address the challenges of limited data and computational power in generating dolphin signals.

MDPI Publishing. Click here to Read More