Competition between Energy and Dynamics in Memory Formation

Bistable objects that are pushed between states by an external field are often used as a simple model to study memory formation in disordered materials. Such systems, called hysterons, are typically treated quasistatically. Here, we generalize hysterons to explore the effect of dynamics in a simple spring system with tunable bistability and study how the system chooses a minimum. Changing the timescale of the forcing allows the system to transition between a situation where its fate is determined by following the local energy minimum to one where it is trapped in a shallow well determined by the path taken through configuration space. Oscillatory forcing can lead to transients lasting many cycles, a behavior not possible for a single quasistatic hysteron.

  • Received 31 October 2022
  • Revised 10 March 2023
  • Accepted 19 April 2023


Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Nonlinear DynamicsCondensed Matter, Materials & Applied Physics

Source link